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Abstract
In this survey, we give an overview of 3-dimensional topological quantum field theories (TQFTs) and the corresponding quantum
invariants of 3-manifolds. We recall the main algebraic concepts and constructions, such as modular and spherical fusion categories,
the Witten-Reshetikhin-Turaev and Turaev-Viro theories, and the relation between these two TQFTs. We also briefly discuss generaliza-
tions of these constructions by providing a (non-exhaustive) review of some recent works on 3-dimensional extended TQFTs, defect
TQFTs, homotopy QFTs, and non-semisimple TQFTs.

Introduction

Topological invariants are quantities associated with a topological space that do not change under continuous deformations of the
space. One way to determine if two spaces are topologically distinct from each other is to compare the values of these invariants.
Many topological invariants (such as (co)homology and homotopy theories) have been introduced and thoroughly studied since
the XIXth century, allowing for a complete classification of several families of topological objects. However, the study of 3-
dimensional manifolds using topological invariants remains a very active area of research. In particular, a new class of topological
invariants of 3-manifolds, called quantum invariants, emerged in the 1980s.

Quantum invariants originate from the idea of relating the topology of smooth manifolds to the partition functions of certain
quantum field theories (QFTs). This idea was first proposed by Schwarz in 1978, and elaborated by Witten in 1988 who showed
that the Chern-Simons QFT can produce the Jones polynomial, a polynomial invariant of knots and links in the 3-sphere. This was
the beginning of a fascinating interaction between mathematics and theoretical physics. Witten also conjectured that Chern-
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Simons theory can be used to define more general invariants of 3-manifolds, which were later constructed rigorously by Reshe-
tikhin and Turaev in 1989 using quantum groups. These quantum invariants, more generally defined using modular categories, are
known as the Witten-Reshetikhin-Turaev invariants and extend to 3-dimensional topological quantum field theories (TQFTs),
which are QFTs that depend only on the topology and not on the geometry of the manifolds. A second important family of
quantum 3-manifold invariants comes from the Turaev-Viro-Barrett-Westbury state sum construction on triangulations of
3-manifolds, defined in the 1990s using fusion categories. The quantum field theory motivating these state sum invariants is the
Ponzano-Regge model for 3-dimensional lattice gravity. Since then, quantum 3-manifold invariants and their associated TQFTs
have been extensively studied and successfully generalized in several directions (including extended TQFTs, defect TQFTs,
homotopy QFTs, non-semisimple TQFTs).

This review is organized as follows. Section “Algebraic Preliminaries” is dedicated to algebraic preliminaries on the pivotal,
ribbon, fusion, and modular categories. Section “Three Dimensional TQFTs” is devoted to generalities on 3-dimensional TQFTs. In
Section “The Surgery Approach”, we define the Witten-Reshetikhin-Turaev surgery invariants and their TQFTs from modular
categories. In Section “The State Sum Approach”, we define the state sum invariants and their TQFTs from spherical fusion
categories. Section “Comparison of the Two Approaches” is devoted to the comparison of surgery and state sum approaches.
Finally, in Section “Generalizations and Perspectives”, we end with a (non-exhaustive) review of some more recent works on
extended TQFTs, defect TQFTs, homotopy QFTs, and non-semisimple TQFTs.
Algebraic Preliminaries

The definition of quantum invariants begins with fixing suitable algebraic data, which are best described in terms of monoidal
categories.
Pivotal Categories

Let C be a monoidal category (i.e., a category with an associative tensor product and a unit object 1). A left duality in C assigns to
any object X of C an object X� together with two morphisms evX : X�#X-1 and coevX : 1- X#X� in C (the left evaluation
and coevaluation) such that

ðidX#evXÞðcoevX#idXÞ ¼ idX and ðevX#idX� ÞðidX�#coevXÞ ¼ idX� :

The left dual of a morphism f : X-Y is then the morphism f� : Y�-X� defined by

f� ¼ ðevY#idX�Þ ðidY�#f#idX�Þ ðidY�#coevXÞ:

We will often abstain (by abuse) from writing down the following canonical isomorphisms

X��DX; ðX#YÞ�DY�#X�; 1�D1:

A pivotal structure in C is a left duality in C together with a natural isomorphism f¼ fX : X-X��
� �

XAC which is monoidal in
the sense that fX#Y ¼ fX#fY . The right evaluation and coevaluation associated with an object XAC are then defined by

fevX ¼ evX� ðfX#idX�Þ : X#X�-1 and gcoevX ¼ ðidX�#f�1
X ÞcoevX� : 1-X�#X:

The (co)evaluation morphisms allow to define the left trace and right trace of any endomorphism g : X-X as

trlðgÞ ¼ evXðidX�#gÞ gcoevX : 1-1 and trrðgÞ ¼fevXðg#idX� ÞcoevX : 1-1:

Both take values in the commutative monoid Endcð1Þ of endomorphisms of the monoidal unit 1 and share a number of
properties of the standard trace of matrices such as trlðfhÞ ¼ trlðhf Þ and trlðgÞ ¼ trrðg�Þ ¼ trlðg��Þ (and similarly with l; r exchan-
ged). The left and right dimensions of an object XAC are defined by

dimlðXÞ ¼ trlðidXÞ and dimrðXÞ ¼ trrðidXÞ:

Note that isomorphic objects have the same dimensions and dimlð1Þ ¼ dimrð1Þ ¼ id1.
A pivotal category is a monoidal category endowed with a pivotal structure.
Penrose Graphical Calculus

We represent morphisms in a pivotal category C by plane diagrams to be read from the bottom to the top. Diagrams are made of
oriented arcs colored by objects of C and of boxes colored by morphisms of C. The arcs connect the boxes and have no mutual
intersections or self-intersections. The identity idX of an object X, a morphism f : X-Y , the composition of two morphisms
f : X-Y and g : Y-Z, and the monoidal product of two morphisms a : X-Y and b : U-V are represented as follows:
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A box whose lower/upper side has no attached strands represents a morphism with source/target 1. If an arc colored by X is

oriented upward, then the corresponding object in the source/target of morphisms is X�. For example, idX� and a morphism
f : X�#Y-U#V�#W may be depicted as:
The duality morphisms are depicted as

The dual of a morphism f : X-Y can be depicted as

and the traces of an endomorphism g : X-X as

Note that the morphisms represented by the diagrams are invariant under isotopies of the diagrams in the plane, keeping the
bottom and top endpoints (see Joyal and Street (1991) and Turaev and Virelizier (2017)).
Spherical Categories

A spherical category is a pivotal category whose left and right traces are equal, i.e., trlðgÞ ¼ trrðgÞ for every endomorphism g of an
object. Then trlðgÞ and trrðgÞ are denoted trðgÞ and called the trace of g. In particular, the left and right dimensions of an object X are
equal, denoted dimðXÞ, and called the dimension of X.

For spherical categories, the corresponding Penrose graphical calculus has the following property: the morphisms repre-
sented by diagrams are invariant under isotopies of diagrams in the 2-sphere S2 ¼ℝ2 Sf1g, i.e., they are preserved under
isotopies pushing arcs of the diagrams across 1. For example, the diagrams above representing trlðgÞ and trrðgÞ are related by
such an isotopy. Note that the condition trlðgÞ ¼ trrðgÞ for all g is therefore necessary (and in fact sufficient) to ensure this
property.
Braided Categories

A braiding in a monoidal category B is a natural isomorphism c¼ cX;Y : X#Y-Y#X
� �

X;YAB such that

cX;Y#Z ¼ ðidY#cX;ZÞðcX;Y#idZÞ and cX#Y ;Z ¼ ðcX;Z#idY ÞðidX#cY;ZÞ:
These conditions imply that cX;1 ¼ c1;X ¼ idX for any object X. A monoidal category endowed with a braiding is said to be braided.

Let B be a braided pivotal category. The braiding and its inverse are depicted as
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The family y¼ yX : X-Xf gXAB , defined by

is called twist of B. It is a natural isomorphism and satisfies y1 ¼ id1 and yX#Y ¼ ðyX#yY ÞcY ;XcX;Y .

Ribbon Categories

A ribbon category is a braided pivotal category B whose twist is self-dual, i.e., ðyXÞ� ¼ yX� for all objects X of B. This condition is
equivalent to the equality of morphisms

The inverse of the twist is then computed by

Ribbon categories are spherical and nicely fit into the theory of knots and links in S3. A link LCS3 is a closed one-dimensional
submanifold of S3. (A manifold is closed if it is compact and has no boundary.) A link is oriented (resp. framed) if all its components
are oriented (resp. provided with a homotopy class of nonsingular normal vector fields). Any ribbon category B gives rise to an
invariant of B-colored framed oriented links in S3. Here, a link is B-colored if each of its components is endowed with an object of
B (called the color of this component). Namely, every B-colored framed oriented link LCS3 determines an endomorphism of the
unit object

〈L〉BAEndBð1Þ
which turns out to be an isotopy invariant of L. To compute 〈L〉B, present L by a plane diagram with only double transversal
crossings such that the framing of L is orthogonal to the plane, and then apply the Penrose graphical calculus to this B-colored
diagram (using the braiding and its inverse for the positive and negative crossings). The axioms of a ribbon category imply that
〈L〉B does not depend on the chosen plane diagram for L. For example,

〈OX〉B ¼ dimðXÞ

for the trivial knot OX with zero framing and color XAB.
Further constructions need the notion of a tangle. An (oriented) tangle is a compact (oriented) one-dimensional submanifold

of ℝ2 � ½0;1� with endpoints on ℝ� 0� 0;1f g. Near each of its endpoints, an oriented tangle T is directed either down or up, and
thus acquires a sign 71. Then one can view T as a morphism from the sequence of 71’s associated with its bottom ends to the
sequence of 71’s associated with its top ends. Tangles can be composed by putting one on top of the other. This defines a
monoidal category of tangles T whose objects are finite sequences of 71’s and whose morphisms are isotopy classes of framed
oriented tangles. Given a ribbon category B, we can consider B-colored tangles, that is, (framed oriented) tangles whose com-
ponents are labeled with objects of B. They form a category T B . Links appear here as tangles without endpoints, that is, as
morphisms 0j-0j. The link invariant 〈L〉B generalizes to a functor 〈 � 〉B : T B-B, see Turaev (1994).
Fusion Categories

Let k be a field. A monoidal category is k-linear if its Hom sets are k-vector spaces, and the composition and monoidal product of
morphisms are k-bilinear. Such a category is additive if any finite family of objects has a direct sum.

An object S of a k-linear monoidal category C is simple if the k-vector space EndCðSÞ is one dimensional. Then the map
k-EndCðSÞ, k↦k idS is a k-algebra isomorphism. It is used to identify EndCðSÞ ¼ k.

A fusion category (over k) is an additive k-linear pivotal category C such that each object of C is a (finite) direct sum of simple
objects, HomCði; jÞ ¼ 0 for any non-isomorphic simple objects i; j of C, the unit object 1 is simple, and the set of isomorphism
classes of simple objects of C is finite. These conditions imply that all the Hom spaces in C are finite dimensional k-vector spaces.

In a fusion category, the left and right dimensions of any simple object of C are nonzero in EndCð1Þ ¼ k. Also, a fusion category
is spherical if and only if any simple object has equal left and right dimensions.
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The dimension of a fusion category C is

dimðCÞ ¼
X
iAI

dimlðiÞdimrðiÞAk;

where I is any representative set of simple objects of C (meaning that 1AI and every simple object of C is isomorphic to a unique
element of I). By Etingof et al. (2005), dimðCÞa0 when k is an algebraically closed field of characteristic zero. For spherical C, we
have dimðCÞ ¼

P
iAIdimðiÞ2.

A standard example of a spherical fusion category with nonzero dimension is the category of finite dimensional representations
(over k) of a finite group whose order is relatively prime to the characteristic of k. More interesting examples of spherical fusion
categories are derived from the theory of subfactors, see Evans and Kawahigashi (1998) and Kodiyalam and Sunder (2001).
6j-Symbols

The 6j-symbols were first introduced by the physicists Wigner and Racah in the theory of representations of SU2ðCÞ. The
6j-symbols have been extensively used in the theory of angular momentum in quantum mechanics and in the Ponzano-Regge
approach to quantum gravity in dimension three. Also, the 6j-symbols play a special role in 3-dimensional state sum TQFTs (see
Section “The State Sum Approach”). We will need two versions of the 6j-symbols (among the 26 ¼ 64 versions, each of them
corresponding to a choice of orientation for the edges of a tetrahedron, see Turaev and Virelizier (2017)).

Let C be a spherical fusion category and I be a representative set of simple objects of C. For i; j; kAI, consider the multiplicity
spaces

Hk
i;j ¼HomCði#j; kÞ and Hi;j

k ¼HomCðk; i#jÞ:

The positive 6j-symbol associated with i; j; k;ℓ;m; nAI is the k-linear form

i j k

ℓ m n

� �
þ
: Hk;ℓ

m #Hn
j;ℓ#Hi;m

n #Hj
i;k-k

which maps a#b#g#δ to

Similarly, the negative 6j-symbol is the k-linear form

i j k

ℓ m n

� �
�
: Hm

k;ℓ#Hj;ℓ
n #Hn

i;m#Hi;k
j -k

defined by a#b#g#δ↦trðgðidi#aÞðδ#idℓÞbÞ.
Note that if the multiplicity spaces are at most one dimensional and have canonical basis elements (as in the SU2ðCÞ case),

then the 6j-symbols can be interpreted as numbers.
The 6j-symbols satisfy beautiful algebraic identities including the orthonormality relation and the Biedenharn-Elliott identity

(see Turaev and Virelizier (2017), Appendix F).
Modular Categories

Let B be a ribbon fusion category and I be a representative set of simple objects of B. The S-matrix of B is the matrix
S¼ Si;j

� �
i;jAI , where
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Note that for any iAI, the twist yi : i-i is multiplication by an invertible scalar viAk. We set

D7 ¼
X
iAI

v71
i dimðiÞ2Ak:

A modular category (over k) is a ribbon fusion category (over k) such that its S-matrix is invertible (over k). If B is a modular
category, then its dimension dimðBÞ and the scalars D7 are nonzero and satisfy DþD� ¼ dimðBÞ, see Turaev (1994). We say that a
modular category B is anomaly free if Dþ ¼ D�.

Examples of modular categories are derived from quantum groups. The universal enveloping algebra Ug of a (finite dimen-
sional complex) simple Lie algebra g admits a deformation Uqg, which is a quasitriangular Hopf algebra. The representation
category RepðUqgÞ is C-linear and ribbon. For generic qAC, this category is semisimple. (The irreducible representations of g can be
deformed to irreducible representations of Uqg.) For q an appropriate root of unity, a certain subquotient of RepðUqgÞ is a modular
category with ground field k¼C. For g¼ sl2ðCÞ, this result was pointed out by Reshetikhin and Turaev; the general case involves
the theory of tilting modules.

Given a modular category B, the invariant 〈 � 〉B of B-colored framed links and tangles extends by linearity to the case where
colors are finite linear combinations of objects of B with coefficients in k. In particular, the linear combination

O¼
X
iAI

dimðiÞ i;

called the Kirby color, has the following sliding property:

for any object X of B (meaning that the two tangles yield the same morphism X-X under 〈 � 〉B). Here, the dashed line represents
an arc on the closed component colored by O. This arc can be knotted or linked to other components of the tangle (not shown in
the figure). Also

〈O7
O 〉B ¼ D7

for the trivial knot O7
O with framing 71 and color O.
Three Dimensional TQFTs

Inspired by the works of Witten (1989) and Segal (1988), Atiyah (1988) axiomatized the notion of a topological quantum field
theory (TQFT). A 3-dimensional TQFT Z (over a field k) assigns to every oriented closed surface S a finite dimensional k-vector
space ZðSÞ and assigns to every cobordism ðM;S;S0Þ a k-linear homomorphism

ZðMÞ ¼ ZðM;S;S0Þ : ZðSÞ-ZðS0Þ:

Here, a cobordism ðM;S;S0Þ between two oriented closed surfaces S and S0 is an oriented compact 3-manifold M such that
∂M¼ ð�SÞ⊔S0, where the boundary is oriented using the first outward pointing convention and the minus sign indicates the
orientation reversal. A TQFT has to satisfy axioms which can be expressed by saying that

Z : Cob3-Vectk

is a symmetric monoidal functor. Here Vectk is the category of k-vector spaces and Cob3 is the category whose objects are oriented
closed surfaces, whose morphisms are diffeomorphism classes of cobordisms, and whose monoidal structure is given by the
disjoint union. In particular Zð0jÞDk (where 0j is the empty surface) and

ZðS⊔S0ÞDZðSÞ#ZðS0Þ
for any oriented closed surfaces S;S0 (and similarly for cobordisms). Homeomorphisms of surfaces should induce isomorphisms
of the corresponding vector spaces compatible with the action of cobordisms. Every oriented compact 3-manifold M is a
cobordism between 0jand ∂M so that Z yields a “vacuum” vector

ZðMÞAHomkðZð0jÞ;Zð∂MÞÞ ¼ Zð∂MÞ:

If ∂M¼ 0j, then this gives a numerical invariant ZðMÞAEndkðZð0jÞÞ ¼ k.
An isomorphism of 3-dimensional TQFTs Z1-Z2 is a natural monoidal isomorphism of functors. In particular, if two TQFTs Z1

and Z2 are isomorphic, then Z1ðMÞ ¼ Z2ðMÞ for any oriented closed 3-manifold M.
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Interestingly, TQFTs are often defined for surfaces and 3-cobordisms with additional structure. The surfaces S are normally
endowed with Lagrangians, that is, with maximal isotropic subspaces in H1ðS;ℝÞ. For 3-cobordisms, several additional structures
are considered in the literature: for example, 2-framings, p1-structures, and numerical weights. All these choices are equivalent. The
TQFTs requiring such additional structures are said to be projective since they provide projective linear representations of the
mapping class groups of surfaces, see Turaev (1994).
The Surgery Approach

The Witten-Reshetikhin-Turaev invariants of oriented closed 3-manifolds are defined from modular categories and extend to
3-dimensional TQFTs. Their construction is based on the surgery presentation of 3-manifolds. In this section, we fix a modular
category B over a field k.
Surgery on Framed Links

Given an embedded solid torus g : S1 �D2- S3; where D2 is a 2-disk and S1 ¼ ∂D2, a 3-manifold can be built as follows. Remove
from S3 the interior of gðS1 �D2Þ and glue back the solid torus D2 � S1 along gjS1�S1 . This process is known as “surgery”. The
resulting 3-manifold depends only on the isotopy class of the framed knot represented by g. More generally, surgery on a framed
link L¼

Sm
i ¼ 1 Li in S3 with m components yields an oriented closed 3-manifold ML.

A theorem of Lickorish and Wallace asserts that any closed connected oriented 3-manifold is homeomorphic to ML for some L.
Kirby proved that two framed links give rise to homeomorphic 3-manifolds if and only if these links are related by isotopy and a
finite sequence of geometric transformations called Kirby moves. There are two Kirby moves: adjoining a distant unknot O7 with
framing 71 and sliding a link component over another (as in the figure of the sliding property in Section “Modular Categories”).
The WRT Invariants of Closed 3-Manifolds

Let L¼
Sm

i ¼ 1 Li be a framed link in S3. Its linking matrix ðbi;jÞ1ri;jrm has coefficients defined as follows: for ia j, bi;j is the linking
number of Li with Lj, and bi;i is the framing number of Li. Denote by eþ (resp. e�) the number of positive (resp. negative)
eigenvalues of this matrix. The sliding property of modular categories implies the following theorem. In its statement, a framed
knot K which is B-colored by the Kirby color O of B is denoted by KðOÞ.

Theorem 1 The expression

WRTBðMLÞ ¼ D�eþ
þ D�e�

� 〈L1ðOÞ
[

…
[

LmðOÞ〉BAk

is invariant under the Kirby moves on L. This expression yields, therefore, a well-defined topological invariant WRTB of closed connected
oriented 3-manifolds.

Theorem 1 was first proved in Reshetikhin and Turaev (1991) (see also Turaev (1994)). In particular, the invariance under the
second Kirby move follows from the sliding property of the Kirby color of a modular category (see Section “Modular Categories”).
Several competing normalizations of WRTB exist in the literature. Here, the normalization used is such that

WRTBðS3Þ ¼ 1 and WRTBðS1 � S2Þ ¼ dimðBÞ:
The invariant WRTB extends to 3-manifolds with a framed oriented B-colored link K inside (Wilson loops) by setting

WRTBðML;KÞ ¼ D�eþ
þ D�e�

� ⟨L1ðOÞ
[

…
[

LmðOÞ
[

K⟩B:
The Surgery TQFT

The Witten-Reshetikhin-Turaev invariants extend to a projective 3-dimensional TQFT denoted tB and called the surgery TQFT. It
depends on the choice of a square root D of dimðBÞ. The coend of the category B is the object

C¼"
iAI

i�#i;

where I is a representative set I of simple objects of B. For a connected oriented closed surface S of genus g,

tBðSÞ ¼HomBð1;C#gÞ:
The dimension of this vector space enters the Verlinde formula

dimkðtBðSÞÞ1k ¼ dimðBÞg�1
X
iAI

dimðiÞ2�2g

where 1kAk is the unit of the field k. If charðkÞ ¼ 0, then this formula computes dimkðZBðSÞÞ. For a closed connected oriented
3-manifold M with numerical weight zero,
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tBðMÞ ¼D�b1ðMÞ�1WRTBðMÞ;

where b1ðMÞ is the first Betti number of M. In particular,

tBðS3Þ ¼ D�1 and tBðS1 � S2Þ ¼ 1:

The two dimensional part of tB determines a “modular functor” in the sense of Segal, Moore, and Seiberg.
The TQFT tB extends to a vaster class of surfaces and cobordisms. Surfaces may be enriched with a finite set of marked points,

each colored with an object of B and endowed with a tangent direction. Cobordisms may be enriched with ribbon (or fat) graphs
whose edges are colored with objects of B and whose vertices are labeled with appropriate intertwiners. The resulting TQFT, called
the surgery graph TQFT and also denoted tB , is nondegenerate in the sense that, for any surface S, the vector space tBðSÞ is spanned
by the vacuum vectors determined by all M with ∂M¼ S. A detailed construction of tB is given in Turaev (1994).

If B is anomaly free and D¼ D7, then tB is a genuine 3-dimensional TQFT (not only a projective one).
The State Sum Approach

Another approach to three dimensional TQFTs is based on the theory of 6j-symbols and state sums on triangulations of 3-manifolds.
This approach, introduced by Turaev and Viro in 1992 and refined by Barrett-Westbury in 1995, is a quantum deformation of the
Ponzano-Regge model for three dimensional lattice gravity. The state sum quantum invariants of closed 3-manifolds are defined
from spherical fusion categories with nonzero dimensions and extend to 3-dimensional TQFTs.

In this section, we fix a spherical fusion category C (over a field k) with nonzero dimension and let I be a representative set of
simple objects of C.
Triangulations of 3-Manifolds

A tetrahedron is the convex hull of four affinely independent points in some affine space. It has 4 triangular faces called triangles,
6 edges, and 4 vertices:
A triangulation of a 3-manifold M is a decomposition ofM into finitely many tetrahedra such that the triangles of the tetrahedra
are identified with each other pairwise, and the interiors of the tetrahedra remain disjoint.

Moise proved that any compact 3-manifold has a triangulation. Pachner proved that two triangulations of a 3-manifold are
related by a finite sequence of ambient isotopies of triangulations, 2–3 moves, 1–4 moves, and their inverses. The 2–3 move is
performed on two different tetrahedra meeting in a triangle. It deletes this triangle by introducing a new edge connecting the
opposite corners of the tetrahedra (creating three new tetrahedra):

The 1–4 move introduces a vertex inside a tetrahedron and connects it to the four vertices of the tetrahedron with four edges
(creating four new tetrahedra):

State Sum Invariants of Closed 3-Manifolds

Let M be an oriented closed 3-manifold. Pick a triangulation of M and a total order on the set of vertices of the triangulation. A
state is a map from the set of edges of the triangulation to I. Note that the number of states is finite since both the set of edges and I
are finite. For a given state s, we set

dimðsÞ ¼∏
e
dimðsðeÞÞAk

where e runs over all edges of the triangulation. Next, we define a scalar jsjAk as follows.
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For any triangle t of the triangulation, consider the k-vector spaces

Hþ
s;t ¼HomCðsð02Þ;sð01Þ#sð12ÞÞ and H�

s;t ¼HomCðsð01Þ#sð12Þ;sð02ÞÞ;

where 0o1o2 are the vertices of t and ðijÞ denotes the edge connecting the vertices i and j. Since the category C is fusion, the pairing
a#bAH�

s;t#Hþ
s;t ↦ trðabÞAk is non-degenerate. Denote by �s;t the image of 1k under its inverse copairing k-Hþ

s;t#H�
s;t . Let

Hs ¼#
t
Hþ

s;t#H�
s;t

be the unordered tensor product of Hþ
s;t and H�

s;t over all triangles t of the triangulation, and set

�s ¼#
t
�s;tAHs:

For any tetrahedron D of the triangulation, set eD ¼þ if the orientation of D induced by the order of its vertices coincides with
that induced by M, and set eD ¼� otherwise. Moreover, given any triangle t at the boundary of D, set eðt;DÞ ¼ þ if the orientation
of t induced by the order of its vertices coincides with the boundary orientation of tC∂D induced by the orientation ofM restricted
to D, and set eðt;DÞ ¼ � otherwise. Section “6j-Symbols” yields the 6j-symbol

jDjs ¼
sð01Þ sð02Þ sð12Þ
sð23Þ sð13Þ sð03Þ

( )
eD

: #
tC∂D

Heðt;DÞ
s;t -k

where t runs over all triangles in the boundary of D.
Since M is closed, each triangle t of the triangulation is adjacent to two tetrahedra D1 and D2 of the triangulation and

eðt;D2Þ ¼ � eðt;D1Þ. Then the unordered tensor product over all tetrahedra D of their associated 6j-symbols is a k-linear form

Vs ¼#
D
jDjs : Hs-k:

Evaluating Vs on �s yields jsj ¼ Vsð�sÞAk. Finally, set

jMjC ¼ dimðCÞ�u
X
s

dimðsÞ jsj Ak;

where s runs over all states of the triangulation of M and u is the number of vertices of the triangulation.

Theorem 2 jMj C is a topological invariant of M independent of the choice of the triangulation and I.

For example, one computes that

jS3jC ¼ dimðCÞ�1 and jS1 � S2jC ¼ 1:

When C is the fusion category derived from the representations of the quantum group Uqðsl2CÞ with q an appropriate root of
unity (see Section “Modular Categories”), then jMjC is equal to the original Turaev-Viro invariant (Turaev and Viro, 1992) of M.

The proof of Theorem 2 consists in particular of verifying the invariance of the state sum under the application of Pachner
moves on the triangulation. This comes down to the orthonormality relation and the Biedenharn-Elliott identity for 6j-symbols,
see Barrett and Westbury (1996).

The state sum may be more generally defined on skeletons of 3-manifolds (including triangulations, their dual cellular
decompositions, and spines), see Turaev and Virelizier (2017).
The State Sum TQFT

If M is an oriented compact 3-manifold with nonempty boundary, then the algorithm described in the previous section applied to
a state s of a triangulation of M yields not a scalar but a k-linear form

jsj : H∂
s ¼#

t
Heðt;Dt Þ

s;t -k

where t runs over all triangles in the boundary of M and Dt denotes the unique tetrahedron adjacent to such a triangle t. Consider
the state sum

jMj3 ¼ dimðCÞ�u
X
s

dimðsÞjsj

where s runs over all states and u is the number of vertices in the interior of M. Then the assignment M↦jMj3 behaves well with the
gluing of 3-manifolds along boundary components. Consequently, there is a standard procedure (see Turaev and Virelizier
(2017)) to transform it into a (genuine) TQFT

j � jC : Cob3-Vectk:

For example, the vector space associated to the 2-sphere is jS2jCDk.
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Comparison of the Two Approaches

The comparison of the surgery and state sum approaches to 3-dimensional TQFTs is based on the notion of center of a monoidal
category due to Joyal, Street, and Drinfeld.
Categorical Centers

The center of a monoidal category C is the braided category ZðCÞ defined as follows. The objects of ZðCÞ are half braidings of C, that
is, pairs ðA;sÞ, where A is an object of C and s¼ sX : A#X-X#Af gXAC is a natural isomorphism such that

sX#Y ¼ ðidX#sYÞðsX#idY Þ:
A morphism ðA; sÞ-ðA0;s0Þ in ZðCÞ is a morphism f : A-A0 in C such that ðidX#f ÞsX ¼ s0Xðf#idXÞ for all XAC. The unit object
of ZðCÞ is 1ZðCÞ ¼ ð1; fidXgXACÞ and the monoidal product is

ðA;sÞ#ðB;rÞ ¼ ðA#B; ðs#idBÞðidA#rÞÞ:
The braiding c in ZðCÞ is defined by

cðA;sÞ;ðB;rÞ ¼ sB : ðA;sÞ#ðB;rÞ-ðB;rÞ#ðA; sÞ:

If C is a k-linear category, then so is ZðCÞ. If C is pivotal, then so is ZðCÞ with ðA;sÞ� ¼ ðA�; s†Þ, where

and (co)evaluations morphisms and pivotal structure inherited from C. The (left and right) traces of morphisms and dimensions
of objects in ZðCÞ are the same as in C.
The Comparison

The first connections between the surgery and state sum constructions were established by Walker (1991) and Turaev (1994): if B
is a modular category, then it is also a spherical category with nonzero dimension and the surgery and state sum invariants are
related by:

jMjB ¼ tBðMÞtBð�MÞ ð1Þ
for every oriented closed 3-manifold M, where �M is the 3-manifold M with opposite orientation. In particular, if B is unitary over
k¼C (meaning that the Hom spaces in B are equipped with a conjugation compatible with the pivotal structure and the
braiding), then tBð�MÞ ¼ tBðMÞ and so jMjB ¼ jtBðMÞj2Aℝþ.

But in general, a spherical category need not be braided and so cannot be used as input to define the Witten-Reshetikhin-Turaev
invariant. However, let C be a spherical fusion category over an algebraically closed field k such that dimðCÞa0. A fundamental
theorem of Müger (2003) asserts that the center ZðCÞ of C is an anomaly free modular category with Dþ ¼ D� ¼ dimðCÞ. In
particular

dimðZðCÞÞ ¼ DþD� ¼ dimðCÞ2:
Consequently, such a category C gives rise to two (genuine) 3-dimensional TQFTs: the state sum TQFT j � jC and the surgery TQFT
tZðCÞ associated with the square root dimðCÞ of dimðZðCÞÞ.

Theorem 3 The TQFTs j � jC and tZðCÞ are isomorphic. In particular, for any oriented closed 3-manifold M,

jMjC ¼ tZðCÞðMÞ; ð2Þ
and for any oriented closed surface S,

jSjC D tZðCÞðSÞ: ð3Þ

Theorem 3 was first proved in Turaev and Virelizier (2010) (see also Turaev and Virelizier (2017)). In the case where the
characteristic of k is equal to zero, Theorem 3 was independently proved in Balsam (2010).

Theorem 3 relates through the categorical center two categorical approaches to invariants of 3-manifolds. This relationship
sheds new light on both approaches and shows, in particular, that the surgery approach is more general than the state sum
approach. Formula (3) gives

jSjC DHomZðCÞ 1ZðCÞ;C
#g� 	
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where C is the coend of ZðCÞ and g is the genus of S. Note that C¼ ðA;sÞ can be computed explicitly using the category C, see
Turaev and Virelizier (2017). In particular,

A¼ "
i;jAI

i�#j�#i#j:

The formula (2) was previously known to be true in several special cases: when C is the category of representations of a finite
group, when C is the category of bimodules associated with a subfactor Kawahigashi et al. (2005), and when C is modular Turaev
(1994), Walker (1991). In the latter case, Formula (1) can indeed be derived from Formula (2): if B is a modular category, then its
center ZðBÞ is braided equivalent to the Deligne tensor product B ⊠ B (where B is the mirror of B) and therefore Formula (2)
gives

jMjB ¼ tB⊠B ðMÞ ¼ tBðMÞtB ðMÞ ¼ tBðMÞtBð�MÞ:

Generalizations and Perspectives

Three dimensional TQFTs have several interesting generalizations including extended TQFTs, defect TQFTs, homotopy QFTs, and
non-semisimple TQFTs. Extended TQFTs are motivated by applications of higher categorical ideas to the functorial (cut-paste)
nature of TQFTs while defect TQFTs incorporate the presence of defects in the underlying manifolds, which originate from certain
concepts in physics such as domain walls, boundaries, and interfaces. On the other hand, homotopy QFTs can be seen as TQFTs
for manifolds endowed with an extra structure encoded by a homotopy class of maps to a target space (viewed as the classifying
space of the structure). Non-semisimple theories weaken the semisimplicity condition on the underlying fusion categories and
overcome certain limitations on the quantum invariants.

In the following subsections, we shortly discuss these generalizations and review some recent works in these fields.
Extended TQFTs

Recall that a 3-dimensional TQFT provides a numerical invariant of oriented closed 3-manifolds. This invariant can be computed
by cutting the 3-manifold along codimension one submanifolds into 3-manifolds with boundary, and then by composing the
corresponding linear maps. However, these maps as well as the vector spaces assigned to the boundary surfaces, are not always easy
to determine. This leads to wanting to cut the 3-manifold along higher codimensional submanifolds. This motivates the definition
and study of extended TQFTs.

While a 3-dimensional TQFT assigns algebraic invariants to closed surfaces and compact 3-manifolds, a once extended
3-dimensional TQFT should assign algebraic invariants to closed 1-manifolds, 2-manifolds, and 3-manifolds with corners. More
precisely, there is a symmetric monoidal 2-category Bord3;2;1 which extends the category Cob3 and whose objects are oriented
closed 1-manifolds, 1-morphisms are oriented 2-dimensional cobordisms between them, and 2-morphisms are diffeomorphism
classes of oriented cobordisms between 1-morphisms (such cobordisms are oriented compact 3-manifolds with codimension 2
corners). A once extended 3-dimensional TQFT is then a symmetric monoidal 2-functor from Bord3;2;1 to some algebraic symmetric
monoidal 2-category. For example, the Witten-Reshetikhin-Turaev surgery graph TQFT (see Section “The Surgery TQFT”) can be
seen as a once extended 3-dimensional TQFT (with anomaly).

A classification of once extended 3-dimensional TQFTs with values in the symmetric monoidal 2-category of Cauchy complete
linear categories (over an algebraically closed field) is given in Bartlett et al. (2015). This classification states a one-to-one
correspondence between equivalence classes of such extended TQFTs and equivalence classes of modular tensor categories whose
anomaly factor is 1. This correspondence takes an extended TQFT to its value on the circle.

One can further try to extend a once extended 3-dimensional TQFT to three codimensional submanifolds, that is, to
points. Such an extended TQFT is called fully extended and is formally defined as a symmetric monoidal 3-functor from the
3-category Bord3;2;1;0 to some algebraic symmetric monoidal 3-category. The cobordism hypothesis, conjectured by Baez and
Dolan (1995) and proven by Lurie (2009) and recently by Ayala and Francis (2017), states that a fully extended framed TQFT
is determined by its value on a point, and any fully dualizable object of the target category gives rise to a fully extended
framed TQFT which assigns that object to a point, see Freed (2013) and Douglas et al. (2020). Moreover, Lurie (2009)
generalized the cobordism hypothesis to arbitrary tangential structures on manifolds by using homotopy fixed points. In this
formulation, fully extended oriented 3-dimensional TQFTs are classified by homotopy SOð3Þ-fixed points of the target 3-
category.

A natural candidate for the target symmetric monoidal 3-category is the 3-category TC whose objects are finite rigid monoidal
linear categories, 1-morphisms are finite bimodule categories, 2-morphisms are bimodule functors, and 3-morphisms are
bimodule natural transformations. In this case, fully dualizable objects and homotopy SOð3Þ-fixed points in TC are computed in
Douglas et al. (2020) as fusion categories of nonzero dimension and spherical fusion categories, respectively. Given a spherical
fusion category C of nonzero dimension, the associated fully extended oriented 3-dimensional TQFT conjecturally extends the state
sum TQFT j � jC associated with C (see Section “The State Sum Approach”).
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TQFTs with Defects

Defect TQFTs generalize TQFTs by allowing the presence of defects, which are lower dimensional submanifolds of the cobordisms
that can carry nontrivial topological or quantum information. More precisely, a 3-dimensional defect TQFT is a symmetric monoidal
functor

Z : Cobdef
3 ðDÞ-Vectk;

where Cobdef
3 ðDÞ is the category of oriented closed surfaces and oriented cobordisms endowed with a stratification by sub-

manifolds labeled with elements of a fixed labeling data D. The labelings of defect submanifolds should satisfy (higher catego-
rical) algebraic relations reflecting their adjacency. In particular, it is shown in Carqueville et al. (2020) that any 3-dimensional
defect TQFT yields a k-linear Gray 3-category with duals.

Concrete examples of 3-dimensional defect TQFTs generalizing the surgery and state sum TQFTs have been developed in
various papers, notably Kapustin and Saulina (2001), Fuchs et al. (2013), Kitaev and Kong (2012), Carqueville et al. (2018) and
Meusburger (2023).
Homotopy QFTs

Roughly, HQFTs are TQFTs for manifolds endowed with a map to a fixed target space. More precisely, let X be a connected
topological space. Following Turaev (2010), a 3-dimensional homotopy quantum field theory (HQFT) with target X is a symmetric
monoidal functor

Z : XCob3-Vectk:

Here XCob3 is the symmetric monoidal category whose objects are oriented closed surfaces endowed with a map to X and whose
morphisms are diffeomorphism classes of oriented cobordisms equipped with a homotopy class of maps to X restricting to the
given maps on their boundary. In particular, a 3-dimensional HQFT with target X produces a scalar homotopy invariant of maps
from oriented closed 3-manifolds to X. For example, any third cohomology class yAH3ðX;k�Þ gives rise to a 3-dimensional HQFT
with target X, called cohomological HQFT, whose associated homotopy invariant of a map f : M-X is the evaluation of the
pullback class f�ðyÞAH3ðM;k�Þ with the fundamental class ½M�AH3ðM;ZÞ.

If X is a connected homotopy 0-type (that is, a contractible space), then any HQFT with target X is equivalent to a TQFT.
If X is a connected homotopy 1-type, then X is a KðG;1Þ space where G is the fundamental group of X. In this case, the surgery

and state sum TQFTs have been generalized in Turaev and Virelizier (2012) and Turaev and Virelizier (2014) to 3-dimensional
HQFTs with target X. The relevant algebraic structures for their construction are modular and spherical fusion categories which are
G-graded (meaning that objects have a degree in G and this degree is multiplicative with respect to the monoidal product).
Generalizing Theorem 3, it is shown in Turaev and Virelizier (2020) that the surgery and state sum HQFTs are related via the graded
center of graded fusion categories. Also, the orbifold construction Schweigert and Woike (2019) associates a TQFT to each HQFT
with target X. For example, the Dijkgraaf-Witten TQFT is the orbifoldization of a cohomological HQFT.

If X is a connected homotopy 2-type, then X may be encoded by a crossed module χ : E-H which is a certain group
homomorphism with p1ðXÞ ¼ cokerðχÞ and p2ðXÞ ¼ kerðχÞ. In this case, the state sum TQFT has been generalized in Sözer and
Virelizier (2023) to a 3-dimensional HQFT with target X. For this purpose, the relevant algebraic inputs are χ-graded spherical
fusion categories. These are a class of monoidal categories in which not only the objects have a degree (in H) but also the
morphisms have a degree (in E), and the compatibility of these degrees is governed by the crossed module χ. For example, the
cohomological HQFTs associated with X are particular instances of state sum HQFTs with target X.
Non-Semisimple Quantum Invariants

Hennings (1996) was the first to build a non-semisimple quantum invariant of closed 3-manifolds by using a finite dimensional
ribbon Hopf algebra. When the Hopf algebra is semisimple, this invariant agrees with the Witten-Reshetikhin-Turaev invariant
derived from the category of representations of the Hopf algebra. Lyubashenko (1995) extended Hennings’ construction by using
ribbon finite tensor categories. Note that the Lyubashenko invariant does not form a TQFT in the usual sense because it does not
behave well under the disjoint union operation (in particular, when the category is not semisimple, it vanishes on all closed
3-manifolds with positive first Betti number). However, the Lyubashenko invariant forms an extended TQFT in a weaker sense (by
considering cobordisms with corners between connected surfaces and using the connected sum as monoidal product), see Kerler
and Lyubashenko (2001).

To construct genuine TQFTs from non-semisimple modular categories, a useful tool is that of a modified trace introduced in
Geer et al. (2013). Such traces have been used in Costantino et al. (2014) to define a non-semisimple version of the surgery
quantum invariants. The CGP invariants are actually part of an extended TQFT for admissible cobordisms decorated with colored
ribbon graphs and cohomology classes, see De Renzi (2022).

Another instance of a non-semisimple invariant is the Kuperberg invariant (Kuperberg, 1996) of framed 3-manifolds defined
from any finite dimensional Hopf algebra by using Heegaard splittings (i.e., decompositions of 3-manifolds into two handlebodies).
If the Hopf algebra is semisimple, then the Kuperberg invariant is an invariant of closed 3-manifolds and is equal (by Theorem 3)
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to the Hennings invariant derived from the Drinfeld double of the Hopf algebra. This result is extended to non-semisimple Hopf
algebras in Chang and Cui (2019).

A non-semisimple generalization of the Turaev-Viro state sum invariant of closed 3-manifolds is given in Costantino et al.
(2020) using a spherical finite tensor category as algebraic input. It is extended to a (non-compact) 3-dimensional TQFT in
Costantino et al. (2023) via Juhász’s presentation Juhász (2018) of the category Cob3 by generators and relations.
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